
The Forgotten Threat of Voltage Glitching:
A Case Study on Nvidia Tegra X2 SoCs

Otto Bittner∗§, Thilo Krachenfels∗§, Andreas Galauner†, Jean-Pierre Seifert∗‡

∗ Technische Universität Berlin, Chair of Security in Telecommunications
† Independent Researcher

‡ Fraunhofer SIT

§ These authors contributed equally to this work

FDTC 2021

Outline

1. Motivation & Threat model

2. Voltage glitching Background

3. Attack recipe

4. Attack steps and results

5. Conclusion

2

Motivation

● Complex SoCs used in safety-critical

applications

● Physical access by an attacker often possible

● Vendors must consider device tampering

3

Threat Model

● Voltage fault injection (FI) around for more than 20 years

● Can be used to influence the device

○ Corrupt of data values

○ Skip security checks

○ Enter protected code paths

● Commercial SoCs are often not protected against such

attacks (e.g., Nintendo Switch hack)

4

Background: Voltage Glitching

● Idea: Over- or undervolting supply voltage

● Here: Undervolting using a Crowbar circuit

○ Short circuit of voltage rail and ground

● DUT operated out of the rated supply voltage

levels

● Errors in the computation occur

5

Attack Overview

Device Under Test

X2 SoC

Goal

Leak Read-Protected
BootROM

Outcome

?

[1]

6

Voltage FI Recipe

Recipe for FI identified in this work:

7

Step 1 Determining the feasibility of FI
Step 2 Identifying the FI target and a success indicator
Step 3 Finding a trigger signal
Step 4 Finding glitch parameters
Step 5 Generating target payload

Voltage FI Recipe

Recipe for FI identified in this work:

8

Step 1 Determining the feasibility of FI
Step 2 Identifying the FI target and a success indicator
Step 3 Finding a trigger signal
Step 4 Finding glitch parameters
Step 5 Generating target payload

● Separate boot processor: BPMP

● Two privilege levels

● BootROM → Root of trust

● MB1 → Update mechanism

● MB2 → Device initialization
[2]

9

Step 1: FI Feasibility - Code Execution
X2 Boot Flow

● Setup Cross Compilation Toolchain

● Find correct base address - rbasefind

● Study TRM → UART & GPIO output

10

Step 1: FI Feasibility - Code Execution
Build Custom MB2

● Control PC → Parse X2 traffic

● FPGA → Control glitch, reset X2

● X2 → DUT

● Uses Thomas Roth’s

chipfail-glitcher1

1: https://github.com/chipfail/chipfail-glitcher
11

Step 1: FI Feasibility - Hardware Preparation
Basic Fault Injection Setup

12

Step 1: FI Feasibility - Hardware Preparation
Crowbar Circuit

Probe these?

13

Step 1: FI Feasibility - Hardware Preparation
Measurement Setup

● Multiple power domains

● MB1 receives config: BCT

● BCT can change PMIC configs

● Lots of comments!

14

Step 1: FI Feasibility - Hardware Preparation
Power Domains

[3]

15

Step 1: FI Feasibility - Hardware Preparation
Power Domains - Identified Voltage Rails

● Run fault-sensitive code in MB2

● Three independent counters

● Expected Result: !100 - 100 - 10000\n

16

Step 1: FI Feasibility - Proof of Concept

● Code is glitchable

● Other examples in paper

(jump out of loop, change branch dir.)

17

Step 1: FI Feasibility - Proof of Concept
Success!

Voltage FI Recipe

18

Step 1 Determining the feasibility of FI
Step 2 Identifying the FI target and a success indicator
Step 3 Finding a trigger signal
Step 4 Finding glitch parameters
Step 5 Generating target payload

Step 2: FI Target and Success Indicator
X2 Boot Flow

● MB2: Unprivileged

● MB1: Encrypted & Signed

● BootROM: Read-protected?

[2]

19

● Most of BootROM is non-readable

● including: NVBOOT_IROM_SECRET_STORAGE

● 1 kilobyte of data is readable

20

Step 2: FI Target and Success Indicator
BootROM Readability

21

Step 2: FI Target and Success Indicator
BootROM Reversing

Leaked Source Code on GitHub → X1 (T210) and X1+ (T214)

22

● Hidden UART Bootloader

● Deactivated using fuses

● No security checks

● Highest privilege

Step 2: FI Target and Success Indicator
BootROM Reversing

is_fam: returns 0

is_ppm: returns 0

success: desired branch

23

Step 2: FI Target and Success Indicator
Software Target

is_fam: returns 0

is_ppm: returns 0

success: desired branch

24

Step 2: FI Target and Success Indicator
Software Target

After entering desired branch:

25

Step 2: FI Target and Success Indicator
Success Indicator

Voltage FI Recipe

26

Step 1 Determining the feasibility of FI
Step 2 Identifying the FI target and a success indicator
Step 3 Finding a trigger signal
Step 4 Finding glitch parameters
Step 5 Generating target payload

Success #2!

● Entered UART Bootloader with:

Offset: 2.6338 ms

Pulse: 11.32 µs

● Repeatable within < 10 seconds

27

Steps 3 and 4: Glitching the target

Voltage FI Recipe

28

Step 1 Determining the feasibility of FI
Step 2 Identifying the FI target and a success indicator
Step 3 Finding a trigger signal
Step 4 Finding glitch parameters
Step 5 Generating target payload

Device Under Test

X2 SoC

Goal

Leak Read-Protected
BootROM

Outcome

Privileged Code Exec.

Leaked Decryption
Keys

Leaked Read-Protected
BootROM

[1]

29

Attack Overview - Revisited

Conclusion

30

● Manufacturers should not forget attacks that are
around for more than 20 years

● Do not ship debug bootloaders unprotected against
reactivation via fault injection

● Implement glitching detection/countermeasures

Preprint:
https://arxiv.org/abs/2108.06131

References

[1] https://i.ytimg.com/vi/1tWqlM8uULc/maxresdefault.jpg (15.08.21)
[2] https://docs.nvidia.com/jetson/archives/l4t-archived/l4t-3231/Tegra%20Linux%

20Driver%20Package%20Development%20Guide/images/image2_6.png (15.08.21)
[3] Nvidia Corp., Technical Reference Manual Nvidia Parker Series SoC, v1.0p (Jun. 2017)

31

https://i.ytimg.com/vi/1tWqlM8uULc/maxresdefault.jpg
https://docs.nvidia.com/jetson/archives/l4t-archived/l4t-3231/Tegra%20Linux%20Driver%20Package%20Development%20Guide/images/image2_6.png
https://docs.nvidia.com/jetson/archives/l4t-archived/l4t-3231/Tegra%20Linux%20Driver%20Package%20Development%20Guide/images/image2_6.png

Thank you for
your attention!

32

