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Motivation

● Complex SoCs used in safety-critical 

applications

● Physical access by an attacker often possible

● Vendors must consider device tampering
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Threat Model

● Voltage fault injection (FI) around for more than 20 years

● Can be used to influence the device

○ Corrupt of data values

○ Skip security checks

○ Enter protected code paths

● Commercial SoCs are often not protected against such 

attacks (e.g., Nintendo Switch hack)
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Background: Voltage Glitching 

● Idea: Over- or undervolting supply voltage

● Here: Undervolting using a Crowbar circuit

○ Short circuit of voltage rail and ground

● DUT operated out of the rated supply voltage 

levels

● Errors in the computation occur
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Attack Overview

Device Under Test

X2 SoC

Goal

Leak Read-Protected 
BootROM

Outcome

?

[1]
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Voltage FI Recipe

Recipe for FI identified in this work:
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Step 1 Determining the feasibility of FI
Step 2 Identifying the FI target and a success indicator
Step 3 Finding a trigger signal
Step 4 Finding glitch parameters
Step 5 Generating target payload
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● Separate boot processor: BPMP

● Two privilege levels

● BootROM → Root of trust

● MB1 → Update mechanism

● MB2 → Device initialization
[2]

9

Step 1:  FI Feasibility - Code Execution
X2 Boot Flow



● Setup Cross Compilation Toolchain

● Find correct base address - rbasefind

● Study TRM → UART & GPIO output
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Step 1:  FI Feasibility - Code Execution
Build Custom MB2



● Control PC → Parse X2 traffic

● FPGA → Control glitch, reset X2

● X2 → DUT

● Uses Thomas Roth’s 

chipfail-glitcher1

1: https://github.com/chipfail/chipfail-glitcher
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Step 1:  FI Feasibility - Hardware Preparation
Basic Fault Injection Setup
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Step 1:  FI Feasibility - Hardware Preparation
Crowbar Circuit



Probe these?
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Step 1:  FI Feasibility - Hardware Preparation
Measurement Setup



● Multiple power domains

● MB1 receives config: BCT

● BCT can change PMIC configs

● Lots of comments!
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Step 1:  FI Feasibility - Hardware Preparation
Power Domains



[3]
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Step 1:  FI Feasibility - Hardware Preparation
Power Domains - Identified Voltage Rails



● Run fault-sensitive code in MB2

● Three independent counters

● Expected Result: !100 - 100 - 10000\n
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Step 1:  FI Feasibility - Proof of Concept



● Code is glitchable

● Other examples in paper

(jump out of loop, change branch dir.)
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Step 1:  FI Feasibility - Proof of Concept
Success!



Voltage FI Recipe
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Step 1 Determining the feasibility of FI
Step 2 Identifying the FI target and a success indicator
Step 3 Finding a trigger signal
Step 4 Finding glitch parameters
Step 5 Generating target payload



Step 2: FI Target and Success Indicator
X2 Boot Flow

● MB2: Unprivileged

● MB1: Encrypted & Signed

● BootROM: Read-protected?

[2]
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● Most of BootROM is non-readable

● including: NVBOOT_IROM_SECRET_STORAGE 

● 1 kilobyte of data is readable 
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Step 2: FI Target and Success Indicator
BootROM Readability



21

Step 2: FI Target and Success Indicator
BootROM Reversing

Leaked Source Code on GitHub → X1 (T210) and X1+ (T214)
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● Hidden UART Bootloader

● Deactivated using fuses

● No security checks

● Highest privilege

Step 2: FI Target and Success Indicator
BootROM Reversing



is_fam: returns 0

is_ppm: returns 0

success: desired branch
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Step 2: FI Target and Success Indicator
Software Target



is_fam: returns 0

is_ppm: returns 0

success: desired branch
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Step 2: FI Target and Success Indicator
Software Target



After entering desired branch:
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Step 2: FI Target and Success Indicator
Success Indicator



Voltage FI Recipe
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Step 1 Determining the feasibility of FI
Step 2 Identifying the FI target and a success indicator
Step 3 Finding a trigger signal
Step 4 Finding glitch parameters
Step 5 Generating target payload



Success #2!

● Entered UART Bootloader with:

Offset: 2.6338 ms

Pulse: 11.32 µs

● Repeatable within < 10 seconds
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Steps 3 and 4: Glitching the target



Voltage FI Recipe
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Step 1 Determining the feasibility of FI
Step 2 Identifying the FI target and a success indicator
Step 3 Finding a trigger signal
Step 4 Finding glitch parameters
Step 5 Generating target payload



Device Under Test

X2 SoC

Goal

Leak Read-Protected 
BootROM

Outcome

Privileged Code Exec.

Leaked Decryption 
Keys

Leaked Read-Protected 
BootROM

[1]
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Attack Overview - Revisited



Conclusion
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● Manufacturers should not forget attacks that are 
around for more than 20 years

● Do not ship debug bootloaders unprotected against 
reactivation via fault injection

● Implement glitching detection/countermeasures

Preprint:
https://arxiv.org/abs/2108.06131
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Thank you for 
your attention!

32


